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Abstract 

This paper introduces a new generalization of the Kumaraswamy-transmuted 
exponentiated modified Weibull distribution by Al-Babtain et al. [2], based on a 
new family of life time distribution by Mansour et al. [29]. We refer to the new 
distribution as Kumaraswamy new transmuted modified Weibull (Kw-NTMW) 
distribution. The new model contains more than fifty lifetime distributions as 
special cases such as the Kumaraswamy-transmuted exponentiated modified 
Weibull (Kw-TEMW), transmuted modified Weibull, exponentiated modified 
Weibull, exponentiated Weibull, exponentiated exponential, transmuted 
Weibull, Rayleigh, linear failure rate, and exponential distributions, among 
others. The properties of the new model are discussed and the maximum 
likelihood estimation is used to evaluate the parameters. Explicit expressions 
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are derived for the moments and examine the order statistics. The usefulness of 
the Kumaraswamy-transmuted exponentiated modified Weibull distribution for 
modelling reliability data is illustrated by using real data. 

1. Introduction 

In many applied sciences such as medicine, engineering and finance, 
amongst others, modelling and analyzing lifetime data are crucial. 
Several lifetime distributions have been used to model such kinds of data. 
The quality of the procedures used in a statistical analysis depends 
heavily on the assumed probability model or distributions. Because of it, 
considerable effort has been expended in the development of large classes 
of standard probability distributions along with relevant statistical 
methodologies. However, there still remain many important problems 
where the real data does not follow any of the classical or standard 
probability models. 

For complex electronic and mechanical systems, the failure rate often 
exhibits nonmonotonic (bathtub or upside-down bathtub unimodal) 
failure rates (Xie and Lai [42]). Distributions with such failure rates have 
attracted a considerable attention of researchers in reliability 
engineering. In software reliability, bathtub shaped failure rate is 
encountered in firmware, and in embedded software in hardware devices. 
Firmware plays an important role in functioning of hard drives of large 
computers, spacecraft and high performance aircraft control systems, 
advanced weapon systems, safety critical control systems used for 
monitoring the industrial process in chemical and nuclear plants (Zhang 
et al. [44]). The upside down bathtub shaped failure rate is used in data 
of motor bus failures (Mudholkar et al. [34]), for optimal burn-in 
decisions (Block and Savits [7]), for ageing properties in reliability 
(Gupta et al. [18], Jiang et al. [21]) and the course of a disease whose 
mortality reaches a peak after some finite period and then declines 
gradually. 
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The Weibull distribution is a widely used statistical model for 
studying fatigue and endurance life in engineering devices and materials. 
Many examples can be found among the electronics, materials, and 
automotive industries. Recent advances in Weibull theory have also 
created numerous specialized Weibull applications. Modern computing 
technology has made many of these techniques accessible across the 
engineering spectrum. Recently, Ammar and Mazen [3] proposed the 
modified Weibull distribution with cumulative distribution function (cdf) 
given by 

( ) ( ).1 xxexF γ+θ−−=
ν

  (1) 

Al-Babtain et al. [2], introduced the Kumaraswamy-transmuted 
exponentiated modified Weibull (Kw-TEMW) distribution with 
cumulative distribution function (cdf) and probability density function 
(pdf) ( )0for >x  given by 
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where 0,, >αba  and 0>ν  are shape parameters, and 0>θ  and 

0>γ  are scale parameters and 1≤λ  is a transmuted parameter. 

In this article, we use transmutation map approach suggested by 
Mansour et al. [29] to define a new model, which generalizes the 
Kumaraswamy-transmuted exponentiated modified Weibull (Kw-TEMW) 
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distribution. According to this approach, the cumulative distribution 
function (cdf) satisfy the relationship: 

( ) ( ) ( )[ ] ( )[ ] ,0,1 >λ−λ+= αδ xxGxGxF   (4) 

where 0, >δα  for ,10 −>λ>  and ( ) ( ) for24,0 α≥δ≥α+α>α  

( )xG,10 <λ<  be the cumulative distribution function (cdf) of a non-

negative absolutely continuous random variable, ( )xG  be strictly 

increasing on its support, and ( ) .00 =G  

Kumaraswamy [25] introduced a two-parameter distribution on 
( ),1,0  which will be referred to by ‘‘Kw’’ in the sequel. Its cdf is given by 

( ) ( ) ( ),1,0,11 ∈−−= xxxF ba   (5) 

where 0>a  and 0>b  are shape parameters. The model in (5) 
compares extremely favorably in terms of simplicity with the beta cdf, 
that is, the incomplete beta function ratio. The pdf corresponding to (5) is 
given by 

( ) ( ) ( ).1,0,1 1 ∈−= − xxabxf ba   (6) 

The Kw density function has the same basic shape properties of the 
beta distribution: 1>a  and 1>b  (unimodal); 1<a  and 1<b  
(uniantimodal); 1>a  and 1≤b  (increasing); 1≤a  and 1>b  
(decreasing); 1== ba  (constant). The Kw distribution does not seem to 
be very familiar to statisticians and has not been investigated 
systematically in much detail before. However, Jones [22] explored the 
background and genesis of the Kw distribution and, more importantly, 
highlighted some advantages and disadvantages of the beta and Kw 
distributions. 

For an arbitrary baseline cdf, ( ),xG  Cordeiro and Castro [10] defined 

the Kw-G distribution by the pdf ( )xf  and cdf ( )xF  as 

( ) ( ) ( ) [ ( )] ,1.. 11 −− −= baa xGxGxgabxf   (7) 
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and 

( ) [ ( )] ,11 ba xGxF −−=   (8) 

respectively, where ( ) ( ) dxxdGxg =  and a and b are two extra positive 

shape parameters. It follows immediately from (8) that the Kw-G 
distribution with parent cdf ( ) xxG =  produces the minimax distribution 

(6). If X is a random variable with pdf (7), we write ( ),,~ baGKwX −  

where a and b are additional shape parameters which aim to govern 
skewness and tail weight of the generated distribution. 

The rest of the article is organized as follows. In Section 2, introduces 
the proposed Kumaraswamy new transmuted modified Weibull model 
according to the new class of distribution and Kumaraswamy 
distribution. In Section 3, we find the reliability function, hazard rate 
and cumulative hazard rate of the subject model. The expansion for the 
pdf and the cdf functions is derived in Section 4. In Section 5, the 
statistical properties include quantile functions, median, moments, and 
moment generating function are given. In Section 6, order statistics are 
discussed. In Section 7, we introduce the method of likelihood estimation 
as point estimation and, given the equation used to estimate the 
parameters, using the maximum product spacing estimates and the least 
square estimates techniques. In Section 8, we fit the distribution to real 
data set to examine it and to suitability it with some models. Finally, we 
conclude the paper. 

2. A Kumaraswamy New Transmuted Modified 
 Weibull Distribution 

In this section, we introduce a new distribution called the 
Kumaraswamy new transmuted modified Weibull distribution denoted 
by (Kw-NTMW) distribution as a generalization of the Kw-TEMW 
distribution. By using (1), (4), and (8), then the cumulative distribution 
function of Kw-NTMW model ( )0for >x  denoted by ( ,,,,,, δγθλ νxF  

) ( )xFba ≡α ,,  becomes 
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( ) ( ) ( )[ ] ( )[ ]{ } ,,,111
ba
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where  

( ) ( ),1, xxexI γ+θ−−=ϑ
ν

 

whereas its pdf can be expressed 

( ) ( ) ( )[( ) ( )[ ] ( )[ ] ]111 ,,1x.. −α−δγ+θ−− ϑλα−ϑδλ+γ+θ= xIxIebaxf xxννν  
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where 0,0,0, >>α>δ aν  and 0>b  are shape parameters and 0>θ  

and 0>γ  are scale parameters and λ  is a transmuted parameter. The 

random variable x with the density function (10) is said to have a 
Kumaraswamy new transmuted modified Weibull Kw-NTMW 
distribution. 

The importance of the proposed Kw-NTMW model that it is very 
flexible model that approaches to different distributions when its 
parameters are changed. The flexibility of the Kw-NTMW is explained in 
Table 1 when their parameters are carefully chosen. 
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Table 1. The special cases of the Kw-NTMW distribution 

Parameters 
Distribution 

a b λ  δ  α  θ  γ  ν  
Author 

Kw-TEMW    2α      Al-Babtain et al. [2] 

Kw-TELFR    1    2  

Kw-TEW    1  0   New 

Kw-TER    1  0  2 New 

Kw-TEE    1   0  New 

Kw-TMW    1 2    New 

Kw-TLFR    1 2   2  

Kw-TW    1 2 0    

Kw-TR    1 2 0  2  

Kw-TE    1 2  0   

Kw-EMW   0 2α       

Kw-ELFR   0     2 Elbatal [15] 

Kw-EW   0 2α   0   New 

Kw-ER   0 2α   0  2 Gomes et al. [16] 

Kw-EE   0    0   

Kw-MW   0 1     New 

Kw-LFR   0 1    2  

Kw-MW   0 1  0   Cordeiro et al. [13] 

Kw-R   0 1  0  2  

Kw-E   0 1   0   

ETEMW  1  2α      New 

ETELFR  1  2α     2 New 

ETEW  1  2α   0   New 

ETER  1  2α   0  2 New 

ETEE  1  2α    0  New 

ETMW  1  1 2    New 

ETLFR  1  1 2   2 New 

ETW  1  1 2 0    

ETR  1  1 2 0  2  
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Table 1. (Continued) 

ETE  1  1 2  0   

EMW  1 0       

ELFR  1 0     2  

EW  1 0   0    

ER  1 0   0  2  

EE  1 0    0   

EMW  1 0 1     Elbatal [14] 

EW  1 0 1  0  
 Mudholkar and 

Srivastava [33] 

EE  1 0 1   0  
Gupta and Kundu 

[19] 

TEMW 1 1  2α      
Ashour and 
Eltehiwy [5] 

TELFR 1 1  2α     2  

TEW 1 1  2α   0    

TER 1 1  2α   0  2 Merovci [32] 

TEE 1 1  2α    0  Merovci [30] 

TMW 1 1  1 2    Khan and King [24] 

TLFR 1 1  1 2   2  

TW 1 1  1 2 0   Aryal and Tsokos [4] 

TR 1 1  1 2 0  2  

TE 1 1  1 2  0   

ELFR 1 1 0     2 
Sarhan and Kundu 

[37] 

ER 1 1 0   0  2 
Kundu and Raqab 

[26] 

MW 1 1 0 1     
Sarhan and Zaindin 

[38] 

LFR 1 1 0  1   2  

W 1 1 0 1  0   Weibull [41] 

R 1 1 0  1 0  2  

E 1 1 0 1   0   
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Figures 1 and 2 illustrates some of the possible shapes of the pdf and 
cdf of the Kw-NTMW distribution for selected values of the parameters 

,,,,,,, aαδγθλ ν  and b, respectively. 

 

Figure 1. Probability density function of the Kw-NTMW distribution. 

 

Figure 2. Distribution function of the Kw-NTMW distribution. 
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3. Reliability Analysis 

The characteristics in reliability analysis which are the reliability 
function (RF), the hazard rate function (HF), and the cumulative hazard 
rate function (CHF) for the Kw-NTMW are introduces in this section. 

3.1. Reliability function 

The reliability function (RF) also known as the survival function, 
which is the probability of an item not failing prior to some time t, is 
defined by ( ) ( ).1 xFxR −=  The reliability function of the Kw-NTMW 
distribution denoted by ( ),,,,,,,,NTMWKw baR αδγθλ− ν  can be a useful 
characterization of life time data analysis. It can be defined as 

( ) ( ),,,,,,,,,1,,,,,,,, NTMWKwNTMWKw baxFbaxR αδγθλ−=αδγθλ −− νν  

the survival function of is given by 

( ) ( ) ( )[ ] ( )[ ]{ } .,,11,,,,,,,,NTMWKw
ba

xIxIbaxR






 ϑλ−ϑλ+−=αδγθλ αδ

− ν  

Figure 3 illustrates the pattern of the called the Kumaraswamy new 
transmuted modified Weibull distribution (Kw-NTMW) distribution 
reliability function with different choices of parameters ,,,,,,, aαδγθλ ν  

.and b  

 

Figure 3. Reliability function of the Kw-NTMW distribution. 
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3.2. Hazard rate function 

Suppose a system is made up of b independent sub-systems 
functioning independently at a given time and that each sub-system is 
made up of a independent parallel components. If we want to improve the 
reliable of the given system we had to duplicate each component in 
parallel form, then the time to failure of the given system will have the 
cumulative distribution function (10) at .1−=λ  The failure rate function 
associated with (10) is given by 

( ) ( ) ( )[( ) ( )[ ] ( )[ ] ]111 ,,1x.. −α−δγ+θ−− ϑλα−ϑδλ+γ+θ= xIxIebaxh xxννν  

( ) ( )[ ] ( )[ ]{ }
{( ) ( )[ ] ( )[ ] }

.
,,11

,,1
1

a

a

xIxI
xIxI

αδ

−αδ

ϑλ−ϑλ+−

ϑλ−ϑλ+
×  

Figure 4 illustrates some of the possible shapes of the hazard rate 
function of the Kumaraswamy new transmuted modified Weibull 
distribution for different values of the parameters and,,,,,,, aαδγθλ ν  

.b  

 

Figure 4. Hazard rate of the Kw-NTMW distribution. 
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Another importance of The Kw-NTMW model due to its flexibility in 
accommodating all forms of the hazard rate function as seen from Figure 4 
(by changing its parameter values) seems to be an important distribution 
that can be used. 

3.3. Cumulative hazard rate function 

The cumulative hazard function (CHF) of the Kumaraswamy new 
transmuted modified Weibull distribution, denoted by ( ,,NTMWKw λ− xH  

),,,,,,, baαδγθ ν  is defined as 

( ) ( )dxbaxhbaxH
x

,,,,,,,,,,,,,,,, NTMWKw
0

NTMWKw αδγθλ=αδγθλ −− ∫ νν  

( ),,,,,,,,,ln NTMWKw baxR αδγθλ−= − ν  

( ) ( ) ( )[ ] ( )[ ]{ } .,,11ln,,,,,,,,NTMWKw


















 ϑλ−ϑλ+−−=αδγθλ αδ

−

ba
xIxIbaxH ν  

4. Expansion for the pdf and the cdf Functions 

In this section, we introduced another expression for the pdf and the 
cdf functions using. The Maclaurin expansion and binomial expansion to 
simplifying the pdf and the cdf forms. 

4.1. Expansion for the pdf function 

From Equation (10) and using the expansion 

( ) ( ) ( )
( ) ,!1

111
0

j
j

j
k zjjk

kz
+−Γ
+Γ−=− ∑∞

=
  (11) 

which holds for 1<z  and .0>k  Using (11) in Equation (10), then the 
pdf function of the Kw-NTMW can be written as 

( ) ( ) ( )[( ) ( )[ ] ( )[ ] ]111 ,,1.. −α−δγ+θ−− ϑλα−ϑδλ+γ+θ= xIxIexbaxf xxννν  

( ) ( )
( ) ( ) ( )[ ] ( )[ ]{ } .,,1!

1

0

iaii

i
xIxIibi

b −+ααδ
∞

=

ϑλ−ϑλ+
−Γ
Γ−×∑  (12) 
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Equation (12) can be written as 

( ) ( ) ( )[( ) ( )[ ] ( )[ ] ]111 ,,1 −α−δγ+θ−− ϑλα−ϑδλ+γ+θ= xIxIexa.b.xf xxννν  

( ) ( )
( ) ( ) ( ) ( )[ ] ( )( )1111
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,1!

1 −+δ−+
∞

=

ϑλ+
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×∑ iaia
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11 −+

δ

α
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(13) 

which holds for ( )[ ]
( ) ( )[ ]

.1
,1

,
<

ϑλ+

ϑλ
δ

α

xI
xI  

Using (11) and applying it to (13), the pdf of the Kw-NTMW model 
can be written as 

( ) ( ) ( )[( ) ( )[ ] ( )[ ] ]111 ,,1 −α−δγ+θ−− ϑλα−ϑδλ+γ+θ= xIxIexa.b.xf xxννν  

( ) ( ) ( )( )
( ) ( )( )jiaibji

iabji

ji
−+Γ−Γ

+ΓΓ−
×

+∞

=

∞

=
∑∑ 1!!

11

00
 

( ) ( ) ( )[ ] ( )( ) ,,1 1111 jjiajij xI δ−α+−+δ−−+α ϑλ+λ×  (14) 

using binomial expansion and applying it to (14), the pdf of the            
Kw-NTMW model can be written as 

( ) ( ) ( )xxexa.bxf γ+θ−− γ+θ=
ννν 1.  

( ) ( ) ( )( )
( ) ( )( )jiaibji

iabji

ji
−+Γ−Γ
+ΓΓ−

×
++

=

∞
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=
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000

k
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( ) ( ) kk −−+α+ λ+λ× jij 11  

( )[ ] ( )( ) ( ) ( ) ( ),, 11111 kk −−δ+−α+δ−α+−+δϑ× jjiaxI  (15) 

using (11) and applying it to (15), the pdf of the Kw-NTMW model can be 
written as 
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( ) ( ) ( ) ( ) ( )( )
( ) ( )( )jiaibjli
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the pdf of Kw-NTMW distribution can then be represented as 

( ) ( ) ( ) ( ),x 11
,

1

00,,

+γ+θ−−

=

∞

=

γ+θ= ∑∑ lxx
i

lji
eAxf

νννk
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where k,iA  is a constant term given by 
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4.2. Expansion for the cdf function 

Using expansion (11) to Equation (9), then the cdf function of the new 
transmuted modified Weibull distribution can be written as 
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( ) ( ) ,1 :
0,,,

l
li

lji
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k
 (18) 

where liB :  is a constant term given by 

( ) ( ) ( )( ) ( )( )( )
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5. Statistical Properties 

In this section, we discuss the most important statistical properties of 
the Kw-NTMW distribution. 

5.1. Quantile function 

The quantile function is obtained by inverting the cumulative 
distribution (18), where the p-th quantile px  of Kw-NTMW model is the 

real solution of the following equation: 

( ) .01 :
0,,,

=−γ+θ− ∑
∞

=

pxxB l
ppli

lji

ν

k

 (19) 

An expansion for the median M follows by taking .5.0=p  
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5.2. Moments 

Using (17), the r-th non-central moments ( )r
r XE=µ′  of the         

Kw-NTMW model is given by 
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(20) 

In particular, when ,1=r  Equation (20) yields the mean of the             

Kw-NTMW distribution µ  as 
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The n-th central moments or (moments about the mean) can be obtained 
easily from the r-th non-central moments throw the relation 
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Then the n-th central moments of the Kw-NTMW is given by 
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5.3. The moment generating function 

If X is from a Kw-NTMW distribution, then its mgf is 
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6. Order Statistics 

The order statistics and their moments have great importance in 
many statistical problems and they have many applications in reliability 
analysis and life testing. The order statistics arise in the study of 
reliability of a system. The order statistics can represent the lifetimes of 
units or components of a reliability system. Let nYYY ,,, 21 …  be a 

random sample of size n from the Kw-NTMW ( )ba,,,,,,, αδγθλ ν  with 

cumulative distribution function (cdf), and the corresponding probability 
density function (pdf), as in (9) and (10), respectively. Let 

( ) ( ) ( )nYYY ,,, 21 …  be the corresponding order statistics. Then the pdf of 

( ) ,1,: nrY nr ≤≤  denoted by ( )yf nr: is given by 

( ) ( ) [ ( )] 1
NTMWKwNTMWKw:: ,,,,,,,,,,,, −

−− αδβγθλαδβγθλ= r
nrnr FfCyf νν  

[ ( )] .,,,,,,NTMWKw
rnR −

− αδβγθλ× ν  

Therefore, the pdf of the largest order statistic nX  is given by 

( ) ( ) ( ) ( ) ( )[ ] ( )[ ][ ]111 ,,1x... −α−δγ+θ−−
= ϕλα−ϑδλ+γ+θ xIxIebanf xx

xXn
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
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While, the pdf of the smallest order statistic 1X  is given by 
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( ) ( )[ ] ( )[ ]{ } 1
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7. Estimation of the Parameters 

In this section, we introduce the method of likelihood to estimate the 
parameters involved, then give the equations used to estimate the 
parameters by using the maximum product spacing estimates and the 
least square estimates techniques. 

7.1. Maximum likelihood estimation 

The maximum likelihood estimators (MLEs) for the parameters of the 
Kumaraswamy new transmuted modified Weibull distribution 

( )ba,,,,,,,NTMW-Kw αδγθλ ν  is discussed in this section. Consider the 
random sample nxxx ,,, 21 …  of size n from new transmuted 
exponentiated modified distribution ( )ba,,,,,,,NTMW-Kw αδγθλ ν  
with probability density function in (10), then the likelihood function can 
be expressed as follows: 
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Hence, the log-likelihood function Lln=τ  becomes 
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Differentiating Equation (23) with respect to ,and,,,,,,, baαδγθλ ν  

then equating it to zero, we obtain the MLEs of ba and,,,,,,, αδγθλ ν  

as follows: 
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The maximum likelihood estimator � ( l l � l l l l l ), , , , , , ,a bϑ λ θ γ δ α =ν  of 
( )ba,,,,,,, αδγθλ=ϑ ν  is obtained by solving the nonlinear system of 

Equations (24) through (31). It is usually more convenient to use 
nonlinear optimization algorithms such as quasi-Newton algorithm to 
numerically maximize the log-likelihood function. 

7.2. Maximum product spacing estimates 

The maximum product spacing (MPS) method has been proposed by 
Cheng and Amin [9]. This method is based on an idea that the differences 
(spacing) of the consecutive points should be identically distributed. The 
geometric mean of the differences is given as 

1
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where the difference iD  is defined as 
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where ( )( ) 0,,,,,,,,0 =αδγθλ baxF ν  and ( )( ) .0,,,,,,,,1 =αδγθλ+ baxF n ν  

The MPS estimators l l l l lˆ ˆ, , , , , ,PS PSPS PS PS PS PSaλ θ γ δ αν  and lPSb  of 

,,,,,,, aαδγθλ ν  and b are obtained by maximizing the geometric mean 
(GM) of the differences. Substituting pdf of KW-NTMW distribution in 
(33) and taking logarithm of the above expression, we will have 
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The MPS estimators l l l l lˆ ˆ, , , , , ,PS PSPS PS PS PS PSaλ θ γ δ αν  and lPSb  

of ,,,,,,, aαδγθλ ν  and b can be obtained as the simultaneous solution 

of the following nonlinear equations: 
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7.3. Least square estimates 

Let ( ) ( ) ( )nxxx ,,, 21 …  be the ordered sample of size n drawn the      

Kw-NTMW distribution. Then, the expectation of the empirical 
cumulative distribution function is defined as 
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and 

( ) ( ( ) )baxFb
baZ

ib

n

i
,,,,,,,,,,,,,,,

1
αδγθλ′=

∂
αδγθλ∂ ∑

=

νν  

( ( ) ) .01,,,,,,,, =






+
−αδγθλ× n

ibaxF i ν  

These nonlinear can be routinely solved by using Newton’s method or 
fixed point iteration techniques. The subroutines to solve nonlinear 
optimization problem are available in R. We used nlm( ) package for 
optimizing (23). 

8. Applications 

In this section, we use real data set to see how the new model works 
in practice, compare the fits of the Kw-NTMW distribution with others 
models. In each case, the parameters are estimated by maximum 
likelihood as described in Section 7, using the R code. 

In order to compare the two distribution models, we consider criteria 
like AIC,2L−  (Akaike information criterion), CAIC  (corrected Akaike 
information criterion), and BIC (Bayesian information criterion) for the 
data set. The better distribution corresponds to smaller AIC,,2L−  and 

CAIC  values: 

,22AIC k+−= L  

,1
22AICC 







−−
+−=

k
k

n
nL  

and 

( ),log2BIC nk+−= L  

where L  denotes the log-likelihood function evaluated at the maximum 
likelihood estimates, k  is the number of parameters, and n is the sample 
size. 
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The data set represents failure time of 50 items reported in Aarset 
[1]. 

Some summary statistics for the failure time data are as follows: 
Min. st1 Qu. Median Mean rd3  Qu. Max. 

0.10 13.50 48.50 45.67 81.25 86.00 

Table 2. MLEs the measures ,AIC,AIC C  and BICS test to failure time 

data for the models 

Model Parameter Estimates – logL AIC CAIC  BIC 

KNTAW 772509.0−=λ  207.6848 431.3697 434.8818 446.6658 

 00189.0=θ      

 09235.0=ν      

 0152917.0=γ      

 207579.1=δ      

 035739.0=α      

 311286.0=a      

 824264.0=b      

TEMW 1640672.0−=λ  236.6535 487.6286 488.992 497.1887 

 0176781.0=θ      

 00193298.0=γ      

 03926070.0=β      

 949241462.0=α      

EMW 018673571.0=θ  238.8143 481.307 482.1959 488.9551 

 001822666.0=γ      

 010505798.0=β      

 703411609.0=α      

MW 827194.1=θ  241.0289 488.0578 488.5795 493.7939 

 80309.1=γ      

 000288.1=β      
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Table 2. (Continued) 

W 9489561.0=γ  240.9796 485.959 486.2145 489.7832 

 02227559.0=β      

TEE � 50.84 10−λ = ∗  238.6896 483.3793 483.9011 489.1154 

 l 41.69 10−β = ∗      

 l 0.30966α =      

EE l 0.09240p =  239.9733 483.9467 484.2021 487.7708 

 l 53.21 10−λ = − ∗      

 l 32.23 10−α = ∗      

LE l 0.01364528λ =  280.048836 480.0977 480.353 483.9217 

 l 0.00023990β =      

E l 0.02189828β =  241.0677 484.1354 484.2187 486.0474 

These results indicate that the Kw-NTMW model has the lowest AIC 
and CAIC  and BIC values among the fitted models. The values of these 
statistics indicate that the Kw-NTMW model provides the best fit to this 
data. 
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Figure 5. Estimated densities of the data set. 

 

Figure 6. Empirical, fitted, Kw-NTMW, TEMW, EMW, MW, Weibull, 
TEE, EE, and exponential distributions of the data set. 
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9. Concluding Remarks 

In the present study, we have introduced a new generalization of the 
modified Weibull distribution, called the Kumaraswamy new transmuted 
modified Weibull distribution. We refer to the new model as the            
Kw-NTMW distribution and study some of its mathematical and 
statistical properties. We provide the pdf, the cdf, and the hazard rate 
function of the new model, explicit expressions for the moments. The 
model parameters are estimated by maximum likelihood. The new model 
is compared with some models and provides consistently better fit than 
other classical lifetime models. We hope that the proposed model will 
serve as a reference and help to advance future research in this area. 
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